Case Studies of Typical SCR Commissioning Issues & Their Resolutions

Dr. Anupam Sanyal
International Environmental & Energy Consultants,
Inc.

Lakeland, Florida 33810 IEEC@AOL.COM

Presented at the
2003 Conference on Selective Catalytic Reduction
And Non-Catalytic Reduction for NOx Control
Pittsburgh, Pennsylvania, Oct 29-30, 2003
Sponsored by U.S. Department of Energy,
National Energy Technology Laboratory

Outline

- Introduction
- Case Histories of Specific Plants
- Examples of Some Unique Issues
- Conclusions and Recommendation

Introduction

- SCR Retrofit in Response to the SIP Call Rule is a Priority Environmental Project in The USA.
- 100-150 GW Coal fired Units are estimated to be retrofit by SCR
- All Retrofits experienced commissioning issues
- Some experienced unique problems
- Advanced Knowledge of these and how they were resolved can save valuable time and hence cost
- This paper aims at citing some examples and lessons learned

Case Histories of Specific Plants

- PC Fired Units A,B & C (225-330 MW) are the earlier installations
- The major commissioning issues:
 - None achieved Specified NOx Removal Efficiency, requiring major combustion optimization
 - NOx Analyzers of each unit had problems
 - I & C Modification Needed
 - Steam Sootblower operational problem
 - APH Washing Plan formed from dPs of APH & SCR

Case Histories of Specific Plants (Continued)

Unit D Cyclone Fired

- NOx Analyzer Required modification to seal air gaskets
- Original NH3 Transfer Pump Required modification-Single Mechanical face seals replaced with sealless canned motor pumps
- Mal-distribution of NH3 at catalyst inlet due to dilution air system pluggage by ABS, caused by traces of SO₃ in the dilution air from APH leakage.
- Problem solved by re-routing dilution air inlet from the APH Outlet to the FD fan Discharge

Case Histories of Specific Plants (Continued)

Unit E 745 MW Corner Fired

- Extensive Pre-training of the Start-up Team saved valuable time
- NO_x Monitors Required Modification to their seal air gaskets(Same as Unit D)
- Hydraulic Systems of Bypass dampers Required Rework in the field. The SCR Retrofit had Welded Joints
- Piping Arrangement of the dilution air steam coil heat exchangers caused Flow stratification.
 Guide vanes and Perforated Plates corrected the problem

Case Histories of Specific Plants (Continued)

Unit F 675 MW PC

- NO_x Analyzer needed repair, requiring manual operation during repair time
- Ammonia Evaporators Returned to the Manufacturer for Repair

Unit G 468 MW PC

 Severe Premature Catalyst Deactivation due to Arsenic Poisoning, controlled by chemical injection. Coal arsenic content severely underestimated by the wrong method used for measurement

Examples of Some Unique Problems

- 50% additional NH₃ was required and NH₃ slip went up after a short outage. Traced down to the Air Purge Line closing valve was actually open although shown to be in a closed position. Most of the Ammonia/ air mixture was going through the air purge line and not through the AIG.
- Ammonia injection grid used as a ladder by an electrician to change a light bulb! Valve settings got offset- too much Ammonia- too high APH dP- unit inoperable!!
- Trust all documents?
- A satisfactory SCR Control system suddenly went out of control leading to excessive NH₃ slip. Wrong Certification of Concentration of Calibration Gas used to calibrate the NO_x Analyzer

Conclusions

- Some of the commissioning problems & their resolutions of seven earlier coal fired SCR Retrofits have been reviewed
- The study show that most units had problems with NO_x
 Analyzers
- Ammonia Distribution
- Combustion Optimization
- Some problems from unexpected quarters were experienced E.G.Faulty Arsenic measurement method, incorrect calibration gas document.
- Prior Knowledge of these issues should help SCR start-up of new retrofits and hence save time & money